同盟体育资讯网

您现在的位置是: 首页 > 篮球赛事

文章内容

江西甲醇生产厂家联系方式_江西甲醇燃料

tamoadmin 2024-07-28
1.甲醇价格2.大气污染产生的原因及如何防治3.(18分)钛(Ti)被称为继铁、铝之后的第三金属,江西省攀枝花和西昌地区的钒钛磁铁矿储量十分丰富。如下图所4.醇

1.甲醇价格

2.大气污染产生的原因及如何防治

3.(18分)钛(Ti)被称为继铁、铝之后的第三金属,江西省攀枝花和西昌地区的钒钛磁铁矿储量十分丰富。如下图所

4.醇基液体燃料好用吗?是不是要比液化气省钱,安全?承德市隆化县哪里有做醇基液体燃料啊?

江西甲醇生产厂家联系方式_江西甲醇燃料

碳的英文名称来自于拉丁语“carbo”(木炭)一词。由于碳元素在自然界天然存在,它是人类最早认识的化学元素之一。它与铁、硫、铜、银、锡、锑、金、汞、铅等都是古代人早就认识到的化学元素。碳元素是自然界中分布最为广泛的基础元素之一。自然界中以游离状态存在的碳有金刚石、石墨和煤。碳元素的发现与确认,经历了漫长艰苦的历程,是科学技术发展史上的一项重要成就。北京周口店地区遗址就有单质碳的存在,时间可以上溯到大约50万年以前。从新石器时代人类开始制造陶器起,炭黑就被用来作为黑色颜料制造黑陶。战国时代(公元前403一前221年)我国就已用木炭炼铁。随着冶金业的发展,人们在寻找比木炭更廉价的燃料时,找到了煤。据《汉书·地理志》记载:“豫章郡(现今江西省南昌市附近)出石,可燃为薪。”汉代文献《盐铁论》日:“故盐冶之大业,皆依山川,近铁炭。”中国考古工作者在山东平陵县汉初冶铁遗址中发现了煤块,说明中国汉朝初期,即公元前200年就已用煤炼铁了。碳的汉字来自于“炭”。因我国古时称煤为“炭”,遂造为“碳”。到19世纪初,科学家们发现,碳元素是组成生物体最基本的元素。

请选择搜索范围?企业目录?产品目录?二手设备?求购信息?备品备件?行业资讯?行业论文?技术专利?行业标准?行业书籍?企业招聘?人才?友情链接?企业管理?行业论坛?会员注册?|?二级域名申请?|?我能做什么|?网站说明书?|?协议书下载?|?广告预定?|?企业邮局?|?标准库?|?关于我们

免费法律咨询?

首页企业目录产品目录求购信息二手设备备品备件行业资讯行业论文行业标准技术专利企业管理行业书库人才招聘专家介绍技术交流友情链接我的交易区

技术交流首页?|?登录?|?用户注册?|?今日新帖?|?搜索?|?我的收藏夹?|?插件:?万年历?|?杭州公交线路查询

您当前的位置:?中国气体分离设备商务网?→?技术交流?-->?工业气体在国民经济中的应用专题系列讲座?-->?帖子:“碳元素的介绍”?

收藏此帖?

帖子主题:碳元素的介绍?

楼主:shaoys?[2006-3-18?下午?02:49:53]

碳元素的介绍

碳,CARBON,源自carbo,也就是木炭,这种物质发现得很早,上图显示出它的三种自然形式:钻石、炭和石黑。碳的无数化合物是我们日常生活中不可缺少的物质,产品从尼龙和汽油、香水和塑料,一直到鞋油、滴滴涕和等,范围广泛种类繁多。

碳的发现简史

碳可以说是人类接触到的最早的元素之一,也是人类利用得最早的元素之一。自从人类在地球上出现以后,就和碳有了接触,由于闪电使木材燃烧后残留下来木炭,动物被烧死以后,便会剩下骨碳,人类在学会了怎样引火以后,碳就成为人类永久的“伙伴”了,所以碳是古代就已经知道的元素。发现碳的精确日期是不可能查清楚的,但从拉瓦锡(Loisier?A?L?1743—1794法国)1789年编制的《元素表》中可以看出,碳是作为元素出现的。碳在古代的燃素理论的发展过程中起了重要的作用,根据这种理论,碳不是一种元素而是一种纯粹的燃素,由于研究煤和其它化学物质的燃烧,拉瓦锡首先指出碳是一种元素。

碳在自然界中存在有三种同素异形体——金刚石、石墨、C60。金刚石和石墨早已被人们所知,拉瓦锡做了燃烧金刚石和石墨的实验后,确定这两种物质燃烧都产生了CO2,因而得出结论,即金刚石和石墨中含有相同的“基础”,称为碳。正是拉瓦锡首先把碳列入元素周期表中。C60是1985年由美国休斯顿赖斯大学的化学家哈里可劳特等人发现的,它是由60个碳原子组成的一种球状的稳定的碳分子,是金刚石和石墨之后的碳的第三种同素异形体。

碳元素的拉丁文名称Carbonium来自Carbon一词,就是“煤”的意思,它首次出现在1787年由拉瓦锡等人编著的《化学命名法》一书中。碳的英文名称是Corbon。

碳单质

碳在地壳中的质量分数为0.027%,在自然界中分布很广。以化合物形式存在的碳有煤、石油、天然气、动植物体、石灰石、白云石、二氧化碳等。

截止1998年底,在全球最大的化学文摘——美国化学文摘上登记的化合物总数为18.8百万种,其中绝大多数是碳的化合物。

众所周知,生命的基本单元氨基酸、核苷酸是以碳元素做骨架变化而来的。先是一节碳链一节碳链地接长,演变成为蛋白质和核酸;然后演化出原始的单细胞,又演化出虫、鱼、鸟、兽、猴子、猩猩、直至人类。这三四十亿年的生命交响乐,它的主旋律是碳的化学演变。可以说,没有碳,就没有生命。碳,是生命世界的栋梁之材。

纯净的、单质状态的碳有三种,它们是金刚石、石墨、C60。它们是碳的三种同素异形体。

金刚石

石墨

碳六十

金刚石

金刚石晶莹美丽,光彩夺目,是自然界最硬的矿石。在所有物质中,它的硬度最大。测定物质硬度的刻画法规定,以金刚石的硬度为10来度量其它物质的硬度。例如Cr的硬度为9、Fe为4.5、Pb为1.5、钠为0.4等。在所有单质中,它的熔点最高,达3823K。

金刚石晶体属立方晶系,是典型的原子晶体,每个碳原子都以sp3杂化轨道与另外四个碳原子形成共价键,构成正四面体。这是金刚石的面心立方晶胞的结构。

由于金刚石晶体中C—C键很强,所有价电子都参与了共价键的形成,晶体中没有自由电子,所以金刚石不仅硬度大,熔点高,而且不导电。

室温下,金刚石对所有的化学试剂都显惰性,但在空气中加热到1100K左右时能燃烧成CO2。

金刚石俗称钻石,除用作装饰品外,主要用于制造钻探用的钻头和磨削工具,是重要的现代工业原料,价格十分昂贵。

石墨

石墨乌黑柔软,是世界上最软的矿石。石墨的密度比金刚石小,熔点比金刚石仅低50K,为3773K。

在石墨晶体中,碳原子以sp2杂化轨道和邻近的三个碳原子形成共价单键,构成六角平面的网状结构,这些网状结构又连成片层结构。层中每个碳原子均剩余一个未参加sp2杂化的p轨道,其中有一个未成对的p电子,同一层中这种碳原子中的m电子形成一个m中心m电子的大∏键(键)。这些离域电子可以在整个儿碳原子平面层中活动,所以石墨具有层向的良好导电导热性质。

石墨的层与层之间是以分子间力结合起来的,因此石墨容易沿着与层平行的方向滑动、裂开。石墨质软具有润滑性。

由于石墨层中有自由的电子存在,石墨的化学性质比金刚石稍显活泼。

由于石墨能导电,有具有化学惰性,耐高温,易于成型和机械加工,所以石墨被大量用来制作电极、高温热电偶、坩埚、电刷、润滑剂和铅笔芯。

碳六十

20世纪80年代中期,人们发现了碳元素的第三种同素异形体——C60。我们从以下三个方面介绍C60

碳六十的发现和结构特点

碳六十的制备

碳六十的用途

碳六十的发现和结构特点

1996年10月7日,瑞典科学院决定把1996年诺贝尔化学奖授予Robert?FCurl,Jr(美国)、Harold?WKroto(英国)和Richard?ESmalley(美国),以表彰他们发现C60。

1995年9月初,在美国得克萨斯州Rice大学的Smalley实验室里,Kroto等为了模拟N型红巨星附近大气中的碳原子簇的形成过程,进行了石墨的激光气化实验。他们从所得的质谱图中发现存在一系列由偶数个碳原子所形成的分子,其中有一个比其它峰强度大20~25倍的峰,此峰的质量数对应于由60个碳原子所形成的分子。

C60分子是以什么样的结构而能稳定呢?层状的石墨和四面体结构的金刚石是碳的两种稳定存在形式,当60个碳原子以它们中的任何一种形式排列时,都会存在许多悬键,就会非常活泼,就不会显示出如此稳定的质谱信号。这就说明C60分子具有与石墨和金刚石完全不同的结构。由于受到建筑学家Buckminster?Fuller用五边形和六边形构成的拱形圆顶建筑的启发,Kroto等认为C60是由60个碳原子组成的球形32面体,即由12个五边形和20个六边形组成,只有这样C60分子才不存在悬键。

在C60分子中,每个碳原子以sp2杂化轨道与相邻的三个碳原子相连,剩余的未参加杂化的一个p轨道在C60球壳的和内腔形成球面大∏键,从而具有芳香性。为了纪念Fuller,他们提出用Buckminsterfullerene来命名C60,后来又将包括C60在内的所有含偶数个碳所形成的分子通称为Fuller,中译名为富勒烯。

碳六十的制备

用纯石墨作电极,在氦气氛中放电,电弧中产生的烟炱沉积在水冷反应器的内壁上,这种烟炱中存在着C60、C70等碳原子簇的混合物。

用萃取法从烟炱中分离提纯富勒烯,将烟炱放入索氏(Soxhlet)提取器中,用甲苯或苯提取,提取液中的主要成分是C60和C70,以及少量C84和C78。再用液相色谱分离法对提取液进行分离,就能得到纯净的C60溶液。C60溶液是紫红色的,蒸发掉溶剂就能得到深红色的C60微晶。

碳六十的用途

从C60被发现的短短的十多年以来,富勒烯已经广泛地影响到物理学、化学、材料学、电子学、生物学、医药学各个领域,极大地丰富和提高了科学理论,同时也显示出有巨大的潜在应用前景。

据报道,对C60分子进行掺杂,使C60分子在其笼内或笼外俘获其它原子或集团,形成类C60的衍生物。例如C60F60,就是对C60分子充分氟化,给C60球面加上氟原子,把C60球壳中的所有电子“锁住”,使它们不与其它分子结合,因此C60F60表现出不容易粘在其它物质上,其润滑性比C60要好,可做超级耐高温的润滑剂,被视为“分子滚珠”。再如,把K、Cs、Tl等金属原子掺进C60分子的笼内,就能使其具有超导性能。用这种材料制成的电机,只要很少电量就能使转子不停地转动。再有C60H60这些相对分子质量很大地碳氢化合物热值极高,可做火箭的燃料。等等。

碳的成键特征

碳在元素周期表中属第ⅣA族头一名元素,位于非金属性最强的卤素元素和金属性最强的碱金属之间。它的价电子层结构为2s22p2,在化学反应中它既不容易失去电子,也不容易得到电子,难以形成离子键,而是形成特有的共价键,它的最高共价数显然为4。

碳原子sp3杂化

碳原子sp2杂化

碳原子sp杂化-1

碳原子sp杂化-2

碳原子sp3杂化

碳原子的sp3杂化可以生成4个δ键,形成正四面体构型。例如金刚石、甲烷CH4、四氯化碳CCl4、乙烷C2H6等。

在甲烷分子中,C原子4个sp3杂化轨道与4个H原子生成4个δ共价键,分子构型为正四面体结构。

碳原子sp2杂化

碳原子的sp2杂化生成3个δ键,1个∏键,平面三角形构型。例如石墨、COCl2、C2H4、C6H6等。

在COCl2分子中,C原子以3个sp2杂化轨道分别与2个Cl原子和1个O原子各生成1个δ共价键外,它的未参加杂化的那个p轨道中的未成对的p电子O原子中的对称性相同的1个p轨道上的p电子生成了一个∏共价键,所以在C和O原子之间是共价双键,分子构型为平面三角形。

碳原子sp杂化-1

生成2个δ键、2个∏键,直线形构型。例如CO2、HCN、C2H2等。

在CO2分子中,C原子以2个sp杂化轨道分别与2个O原子生成2个δ共价键,它的2个未参加杂化的p轨道上的2个p电子分别与2个O原子的对称性相同的2个P轨道上的3个p电子形成2个三中心四电子的大∏键,所以CO2是2个双键。

在HCN分子中,C原子分别与H和N原子各生成1个δ共价键外,还与N原子生成了2个正常的∏共价键,所以在HCN分子中是一个单键,1个叁键。

碳原子sp杂化-2

生成1个δ键,1个∏键,1个配位∏键和1对孤对电子对,直线型构型。例如在CO分子中,C原子与O原子除了生成一个δ共价键和1个正常的∏共价键外,C原子的未参加杂化的1个空的p轨道可以接受来自O原子的一对孤电子对而形成一个配位∏键,所以CO分子中C与O之间是叁键,还有1对孤电子对。

碳原子不仅仅可以形成单键、双键和叁键,碳原子之间还可以形成长长的直链、环形链、支链等等。纵横交错,变幻无穷,再配合上氢、氧、硫、磷、和金属原子,就构成了种类繁多的碳化合物。

二氧化碳

CO2是无色、无臭的气体,在大气中约占0.03%,海洋中约占0.014%,它还存在于火山喷射气和某些泉水中。地面上的CO2气主要来自煤、石油、天然气及其它含碳化合物的燃烧,碳酸钙矿石的分解,动物的呼吸以及发酵过程。当太阳光通过大气层的时候,CO2吸收波长13~17nm的红外线,如同给地球罩上一层硕大无比的塑料薄膜,留住温暖的红外线,不让它散失掉,使地球成为昼夜温差不太悬殊的温室。CO2的温室效应为生命提供了舒适的生活环境。它还为生命提供了基本的材料,它是绿色植物进行光和作用的原料。绿色植物每年通过光和作用,将大气里CO2含的15?000亿吨碳,变成纤维素、淀粉和蛋白质,并且放出O2气,供给动物和人类食用。

绿色植物一直维持着大气中O2和CO2的平衡,但近年来随着全世界工业的高速发展和由此带来的海洋污染,使大气中CO2越来越多,据估计每年约增加百万分之二到四。这被认为是对世界气温普遍升高有影响的一个重要因素。

关于CO2,我们从它的结构、性质和制备三个方面来介绍:

二氧化碳的结构

二氧化碳的性质

二氧化碳的制备

二氧化碳的结构

在CO2分子中,碳原子用sp杂化轨道与氧原子成键。

C原子的两个sp杂化轨道分别与一个O原子生成两个δ键。C原子上两个未参加杂化的p轨道与sp杂化轨道成直角,并且从侧面同氧原子的p轨道分别肩并肩地发生重叠,生成两个∏三中心四电子的离域键。因此,缩短了碳—氧原子间地距离,使CO2中碳氧键具有一定程度的叁键特征。决定分子形状的是sp杂化轨道,CO2为直线型分子。

二氧化碳的性质

CO2分子没有极性,因此分子间作用力小,溶沸点低,键能大,原子间作用力强,分子具有很高的热稳定性。例如在2273K时CO2只有1.8%的分解:

CO2临界温度高,加压时易液化,液态CO2的汽化热很高,217K时为25.1kJ·mol-1。当液态CO2自由蒸发汽化时,一部分CO2被冷凝成雪花状的固体,这固体俗称“干冰”。它是分子晶体。在常压下,干冰不经熔化,于194.5K时直接升华气化,因此常用来做制冷剂。

CO2是酸性氧化物,它能与碱反应。工业上,纯碱Na2CO3、小苏打NaHCO3、碳酸氢氨NH4HCO3、铅白颜料Pb(OH)22PbCO3、啤酒、饮料、干冰等生产中都要食用大量的CO2。

一般讲,CO2不助燃,空气中含CO2量达到2.5%时,火焰就会熄灭。所以CO2是目前大量使用的灭火剂。但着火的镁条在CO2气中能继续燃烧,说明CO2不助燃也是相对的:

CO2不活泼,但在高温下能与碳或活泼的金属镁、铅等反应:

CO2虽然无毒,但若在空气中的含量过高,也会使人因为缺氧而发生窒息的危险。人进入地窖时应手持燃着的蜡烛,若烛灭,表示窖内CO2浓度过高,暂不宜进入。

二氧化碳的制备

在工业上可利用煅烧石灰石生产石灰以及通过酿造工业而得到大量的CO2副产物。

在实验室中则常用碳酸盐和盐酸作用来制备CO2:

一氧化碳

CO也是一种无色、无臭的气体,我们介绍它的结构、性质和制备方法。

CO的结构

CO的性质

CO的制备

CO的结构

按照杂化轨道理论,在CO分子中,碳原子取sp杂化与氧原子成键。

C原子的2个p电子可与O原子的2个成单的p电子形成一个δ键和一个∏键,O原子上的成对的p电子还可以与C原子上的一个空的2p轨道形成一个配位键。(配位键定义:由一个原子提供电子对为两个原子所共用而形成的共价键,称为配位键)。用←表示配键,箭头指向接受电子对的原子,此处即成键的一对电子是O原子单独提供的,C原子提供空轨道接受电子。其结构式可表示为:

按照分子轨道理论,从CO分子的分子轨道能级图可以看出,C原子核外有4个价电子,其电子结构式为2s22p2;O原子核外有6个价电子,其电子结构式为2s22p4,由于C和O原子的相应的原子轨道能量相近,互相重叠形成CO分子的分子轨道。CO分子的价键结构式可以表示为:

[1]式中的箭头表示由氧单方面提供一对电子为两个原子共用而形成的共价键,亦称为配位键。

[2]式中的表示∏配位键,两个圆点偏于一边,则表示这电子在原子状态时是在氧原子的轨道上,而在形成CO分子后,也还是比较靠近氧原子核的。

这种包含有配位键的三重键结构能够圆满地解释键能大、键长短、偶极矩几乎等于零的事实。如果没有配位键的话,CO应该是极性很强的分子,因为O原子的电负性要比C原子大得多,但是配位键的存在,使O原子略带正电荷,C原子略带负电荷,两种因素相互抵消,所以CO的偶极矩几乎等于零。

CO分子和N2分子中各有10个价电子,它们是等电子体,亦称为等电子分子。等电子分子轨道电子排布和成键情况及性质非常相似。

在CO分子中,因C原子略带负电荷,这个C原子比较容易向其它有空轨道的原子提供电子对形成配位键并生成许多羰基化合物。这也是CO分子的键能虽然比N2分子的大,而它却比较活泼的一个原因。

CO的性质

(1)、CO是一种很好的还原剂

在高温下,CO可以从许多金属氧化物中夺取氧,使金属还原。冶金工业中用焦碳作还原剂,实际上起重要作用的是CO:

在常温下,CO还能使一些化合物中的金属离子还原。例如:CO能使二氯化钯溶液、银氨溶液变黑,反应十分灵敏,可用于检测微量CO的存在:

CO是一种重要的配体它能与许多过渡金属加合生成金属羰基化合物。例如Fe(CO)5、Ni(CO)4和Cr(CO)6等。我们以Ni(CO)4为例来说明羰基化合物的成键特征。

在金属羰基化合物中,CO以C和金属相连。从CO的分子轨道能级图我们已经知道,CO一方面有非键电子对(孤电子对)可以给予金属原子的空轨道,形成δ配位键。另一方面,CO还有空的反键∏道可以接受金属原子的d电子对,与金属原子的d轨道重叠生成∏键。这种∏键是由金属原子单方面提供电子对到配位体(CO)的空轨道上,所以称为反馈键或配位∏键。反馈键正好可以减少由于生成δ配键引起的金属原子上过多的负电荷的积累。

在羰基化合物中,金属呈低氧化态,具有较多的价电子,有利于形成反馈键。如在Ni(CO)4中,Ni原子为零价,价电子为3d84s2,Ni原子用sp3杂化轨道接受4个CO提供的非键电子对形成δ配位键。另外Ni原子上的d电子对反馈到CO的空的反键∏*轨道上去,生成反馈键。由于δ配位键和反馈键两种成键作用是同时进行的,使金属与CO生成的羰基化合物具有很高的稳定性。

羰基化合物一般是剧毒的。CO对动物和人类的高度毒性亦产生于它的加合作用,它能与血液中的血红素(一种Fe的配合物)结合生成羰基化合物,使血液失去输送氧的作用,导致组织低氧症,如果血液中50%的血红素与CO结合,即可引起心肌坏死。空气中只要有1/800体积比的CO就能使人在半小时内死亡。(1aroman?、CO相当活泼它很容易同O、S、H以及卤素F2、Cl2、Br2相化合。

①CO能在空气中燃烧,生成CO2,并放出大量的热:

②CO与H2反应,可生成甲醇和某些有机化合物:

③CO与S反应,生成硫化碳酰:

④CO与卤素F2、Cl2、Br2反应,可以生成卤化碳酰,卤化碳酰很容易被水分解,并与氨作用生成尿素:

氯化碳酰又名“光气”,是极毒的。但它是以较大的量而生产的,用于制造甲苯二异氰酸酯,这是生产聚氨酯塑料的一种中间体。

CO的制备

实验室制备CO气体的方法:

(1)、甲酸滴加到热的浓硫酸中脱水:

(2)、将草酸晶体与浓硫酸共热:

使反应中产生的混合气体通过固体NaOH,吸收掉CO2而得到纯的CO气体。

工业上制备CO气体的方法:

工业上CO的主要来源为水煤气、发生炉煤气和煤气。

水煤气CO和H2的一种等分子混合物,是由空气和水蒸气交替地通入赤热的碳层时得到的:

发生炉煤气是CO和N2(CO占二分之一体积)的混合物,是由有限量的空气通过赤热的碳层时反应得到的:

煤气是CO、H2、CH4和CO2的一种混合物。水煤气、发生炉煤气和煤气都是重要的工业气体燃料。

碳酸和碳酸盐

CO2能溶于水生成碳酸H2CO3,碳酸是一种弱酸,仅存在于水溶液中,pH约等于4。

H2CO3为二元酸,必能生成两类盐:碳酸盐和碳酸氢盐。

C原子在这两种离子中均取sp2杂化轨道与外来的4个电子生成四个键,离子为平面三角形。了解这两类盐在水中的溶解性、水解性和热稳定性很重要。

溶解性

水解性

热稳定性

溶解性

碳酸盐:铵和碱金属(Li除外)的碳酸盐易溶于水。其它金属的碳酸盐难溶于水。例如(NH4)2CO3、Na2CO3、K2CO3等易溶于水,CaCO3、MgCO3等难溶于水。

碳酸氢盐:对于难溶的碳酸盐来说,其相应的碳酸氢盐却有较大的溶解度。例如难溶的碳酸钙矿石在CO2和水的长期侵蚀下,可以部分地转变为Ca(HCO3)2而溶解:

对于易溶的碳酸盐来说,其相应的碳酸氢盐却有相对较低的溶解度。例如向浓的碳酸氨溶液通入CO2至饱和,便可沉淀出NH4HCO3,这是工业上生产碳铵肥料的基础。

溶解度的反常是由于HCO3-离子通过氢键形成双聚或多聚链状有关:

水解性

碱金属和铵的碳酸盐和碳酸氢盐在水溶液中均因水解而分别显强碱性和弱减性:

在金属盐类(碱金属和铵盐除外)溶液中加入?CO32-离子时,产物可能是碳酸盐、碱式碳酸盐或氢氧化物,究竟是哪种产物呢?一般来说:

(1)氢氧化物碱性较强的离子,即不水解的金属离子,可沉淀为碳酸盐。例如:

(2)氢氧化物碱性较弱的离子,如Cu2+、Zn2+、Pb2+、Mg2+等,其氢氧化物和碳酸盐的溶解度相差不多,则可沉淀为碱式碳酸盐。例如:

(3)强水解性的金属离子,特别是的,其氢氧化物的溶度积小的离子,如Al3+、Cr3+、Fe3+等,将沉淀为氢氧化物。例如:

因此碳酸钠、碳酸铵常用作金属离子的沉淀剂。

热稳定性

热不稳定性是碳酸盐的一个重要性质,一般来说,有下列热稳定性顺序:

碱金属的碳酸盐>碱土金属碳酸盐>副族元素和过渡元素的碳酸盐

在碱金属和碱土金属各族中,阳离子半径大的碳酸盐>阳离子半径小的碳酸盐。

碳酸盐受热分解的难易程度还与阳离子的极化作用有关。

甲醇价格

能源类股票如下:

太阳能:

G天威(600550) 形成太阳能原材料、电池组件的全产业布局

小天鹅(000418) 大股东参股无锡尚德太阳能电力

岷江水电(600131) 参股西藏华冠科技涉足太阳能产业

生益科技(600192) 控股的东海硅微粉公司是国内最大硅微粉生产企业

维科精华(600152) 成立的宁波维科能源公司专业生产各种动力、太阳能电池

安泰科技(000969) 与德国ODERSUN公司合作薄膜太阳能电池产业

长城电工(600192) 参股长城绿阳太阳能公司涉足太阳能领域

乐山电力(600644) 参股四川新光硅业主要生产多晶硅太阳能硅片

华东科技(000727) 国内最大的太阳能真空集热管生产商

力诺太阳(600885) 太阳能热水器的原材料供应商

西藏药业(600211) 发起股东之一为西藏科光太阳能工程技术公司

新华光(600184) 太阳能特种光玻基板

特变电工(600089) 控股的新疆新能源从事太阳能光伏组件制造

航天机电(600151) 控股的上海太阳能科技电池组件产能迅速提升

南玻A(000012) 05年10月拟首期2亿元建设年产能30兆瓦太阳能光伏电池生产线。

交大南洋(600661) 控股的交大泰阳从事太阳能电池组件生产

杉杉股份(600884) 参股尤利卡太阳能,掌握单晶硅太阳能硅片核心技术

王府井(600859) 全资子公司深圳王府井联合了中国最大的太阳能专业研究开发机构——北京太阳能研究所成立了北京桑普光电技术公司

风帆股份(600482) 投巨资参与太阳能电池组件生产

风能:

金山股份(600396) 风力发电,风力发电设备安装及技术服务

湘电股份(600416) 控股股东与德国莱茨鼓风机有限公司签订了合资生产离心风机协议,目前风电资产主要在控股股东中

粤电力(000539) 风力发电

特变电工(600089) 与沈阳工业大学等设立特变电工沈阳工大风能有限公司

京能热电(600578) 为国华能源第二大股东,间接参与风能建设

东方电机(600875) 风电设备制造

核能:

中核科技(000777) 大股东为中国核工业总公司

中成股份(000151) 与清华大学等共同研究开发核能源,科技含量高

G申能(600642) 投资33601万元收购核电秦山联营公司12%股权以及投资10559万元收购秦山第三核电公司10%的股权

京能热电(600578) 为北京地区主要供电单位,具备地热发电和风力发电等题材

乙醇汽油:

丰原生化(000930) 是安徽省唯一一家燃料乙醇供应单位

华润生化(600893) 控股股东华润集团控股吉林燃料乙醇和黑龙江华润酒精二大定点企业

广东甘化(000576) 利用甘蔗、玉米等可再生性糖料生产燃油精,成为汽油代替品

华资实业(600191) 利用可再生性糖料生产燃油精,成为纯车用汽油代替品:

荣华实业600311 赖氨酸(豆粕的替代品)新增产能最大的企业之一

华冠科技(600371) 在国内率先拥有了玉米深加工多项最新技术的所有权或使用权

氢能:

同济科技(600846) 公司与中科院上海有机化学研究所、上海神力科技合资组建中科同力化工材料有限公司开发燃料电池电动车。

中炬高新(600872) 子公司中炬森莱生产动力电池

春兰股份(600854) 春兰集团研发20—100AH系列的大容量动力型高能镍氢电池

力元新材(600478) 主要生产泡沫镍。

稀土高科(600111) 利用19年首次发行股票募集的资金开发镍氢电池项目

锂电池

澳柯玛(600336) 子公司澳柯玛新能源技术公司为锂电池行业标准制订者

杉杉股份(600884) 生产锂电池材料,为国内排名第一供应商

TCL集团(000100) 子公司生产锂电池

维科精华(600152) 成立工业园,生产动力电池、锂电、太阳能电池等项

垃圾发电:

岁宝热电(600864) 参股公司黑龙江新世纪能源有限公司主营垃圾发电

东湖高新(600133) 主营转变为生活垃圾发电、生物质能源等在内清洁再生能源业务

凯迪电力(000939) 公司在垃圾发电领域处领先地位

泰达股份(000652) 公司双港垃圾焚烧发电项目进入商业阶

LED照明

方大A(000055) 氮化镓基半导体照明材料及其器件项目技术和规模居国内领先水平

联创光电(600363) 国家“铟镓氮LED外延片、芯片产业化”示范工程企业

华微电子(600360) 半导体电子大功率器件生产基地

上海科技(600608) 合资的子公司主营高亮度蓝光、绿光、白光LED芯片规模化制造和封装

长电科技(600584) 与北京工大智源科技组建光电子公司,研制高亮度白光芯片

ST福日(600203) 与中科院半导体研究所合作投资氮化镓基高亮度芯片与发光器件项目

绿色照明 浙江阳光(600261) 公司是目前亚洲最大的节能制造厂商,也是飞利浦贴牌灯的最大生产商

佛山照明(000541) 照明产业龙头企业,开发新一代节能荧光灯

建筑节能

双良股份(600481) 公司是溴化锂制冷机国家标准制定者,国内最大的溴化锂制冷机制造商之一,该产品具备节能环保优势。

清华同方(600100) 清华同方人工环境有限公司提供建筑节能系统

方大A(000055) 开发高科技节能环保幕墙

煤炭类.

SZ000552 靖远煤电

SH600123 兰花科创

SH600188 兖州煤业

SH600348 国阳新能

SH600395 盘江股份

SH600408 安泰集团

SH600508 上海能源

SH6001 恒源煤电

SH6009 开滦股份

SH601001 大同煤业

SH601666 平煤天安

SH601699 潞安环能

SZ000933 神火股份

SZ000937 金牛能源

SZ000968 煤 气 化

SZ000983 西山煤电

SZ002128 露天煤业

石油开

600028中国石化

600583海油工程

000027 深能源A

000096 广聚能源

000600 建投能源

000683 远兴能源

000690 宝新能源

000695 滨海能源

000862 银星能源

000937 金牛能源

600508 上海能源

600674 川投能源

600726 华电能源

600780 通宝能源

000552 靖远煤电

000968 煤 气 化

000983 西山煤电

002128 露天煤业

600121 郑州煤电

600188 兖州煤业

6001 恒源煤电

601001 大同煤业

601666 平煤天安

000554 泰山石油

000617 石油济柴

000668 S 武石油

大气污染产生的原因及如何防治

朋友,别着急,详细介绍给你了,是最新的:

注意:/后代表元

品目

生产厂家

出厂价格

涨跌

备注

甲醇

安徽昊源

3640

/

甲醇

安徽临泉

3650

/

甲醇

川维

3700

/

高端为铁运到站价,低端为船只到岸价

甲醇

大庆油田

3900

0

高端为本地零售价格

甲醇

福建三明

3900

0

甲醇

格尔木

3000

/

甲醇

哈气化

3700

0

高端为当地售价

甲醇

河北正元

3550

0

甲醇

河南宝马

3500

0

甲醇

河南遂平

3600

0

甲醇

河南义马

3400

0

甲醇

河南中原

3580

0

低端为预付款销售

甲醇

江西江氨

3800

0

甲醇

鲁南

3600

/

火运价格略低

甲醇

内蒙古天野

/

/

由于装置出现问题,目前无货,暂不报价

甲醇

山东久泰

3640

/

甲醇

山东联盟

3650

0

甲醇

山西丹峰

3500

/

甲醇

山西原平

3400

/

甲醇

陕西榆林

3500

0

甲醇

上海焦化

3720

0

11月合同售价

甲醇

四川江油

3500

0

高端为当地价格

甲醇

新疆吐哈

/

/

正在升温

我国的甲醇生产始于1957年,50年代在吉林、兰州和太原等地建成了以煤或焦炭为原料来生产甲醇的装置。60年代建成了一批中小型装置,并在合成氨工业的基础上开发了联产法生产甲醇的工艺。70年代四川维尼纶厂引进了一套以乙炔尾气为原料的95kt/a低压法装置,用英国ICI技术。1995年12月,由化工部第八设计院和上海化工设计院联合设计的200kt/a甲醇生产装置在上海太平洋化工公司顺利投产,标志着我国甲醇生产技术向大型化和国产化迈出了新的一步。2000年,杭州林达公司开发了拥有完全自主知识产权的JW低压均温甲醇合成塔技术,打破长期来被ICI、Lurgi等国外少数公司所垄断拥的局面,并在2004年获得国家技术发明二等奖。

随着我国经济建设的稳步发展,能源燃料的供需矛盾日趋加剧,替代燃料的问题随此而引起了广泛重视。在寻求替代燃料的过程中,甲醇燃料显现出独特的优势,在和地方相关部门的大力支持下,经过多年的努力,我国甲醇燃料的研究开发取得了巨大成就。

2003年是我国甲醇行业火暴的一年。全年甲醇价格均在高位运行,并创下每吨3000元的历史新高;国内产量大幅增长,全年累计产量达29 8.87万吨,接近300万吨,较2002年的231.77万吨增长了29%;同时,各个甲醇生产企业利润丰厚,纷纷扩产或新建装置。承接2003年的良好走势,2004年甲醇市场继续走好,市场交投活跃,产销量明显增加,价格一直保持在较高水平,市场呈现明显的强势特征。2005年以来,国内甲醇市场走势相当不错,价格基本一路上涨,从元月份的1100元最高上涨到2100元。自2005年6月下旬以来,尽管甲醇价格有所回落,但仍维持在1900元的高位。预计2006年国内市场仍将呈现出一定的强势特征,自2002年以来的牛市行情还将得到一定程度的延续,产销量还将保持较大幅度的增加,价格预计仍将保持在相对高位。

本报告从甲醇工业国际背景入手,先介绍了国际甲醇工业的概况和中国的甲醇工业,然后对中国甲醇市场进行了深入分析,随后对我国甲醇工业的消费及供需情况进行了阐述。接着对甲醇汽油、甲醇装置等进行了细致透彻的分析,并且还对我国甲醇生产企业进行了阐述.

朋友,很详细了呀,希望有所帮助你!

(18分)钛(Ti)被称为继铁、铝之后的第三金属,江西省攀枝花和西昌地区的钒钛磁铁矿储量十分丰富。如下图所

大气污染及其防治

自然界清新、洁净的空气,使人心旷神怡、精神振奋。但是随着工业的迅速发展和人口急剧增长,大量燃烧煤炭、石油所产生的化学物质以废气和烟尘等形式排放到大气中,超过了大气环境的容许量,给人类的生活、生产和身体健康带来有害影响。

据统计,全世界每年排入大气的污染物约有6亿多吨。污染源主要是以下三方面:

生活污染源:如家庭、商业服务部门等燃煤排放的烟尘和废气。

交通污染源:如汽车、火车、飞机、船舶等排放的废气。

工业污染源:如发电厂、钢铁厂、水泥厂、氮肥厂、烧碱厂及其它各类化工厂排放的废气和粉尘。

主要大气污染物有两大类:

气态污染物(如二氧化硫、硫化氢、一氧化碳、二氧化碳、二氧化氮、氨、氯气等)

颗粒态污染物(如烟、雾、粉尘)

大气污染会对人类和其它生物造成危害。本世纪以来,不断发生的公害,使人们认识到保护大气不受污染的重要性。如1952年12月5~8日英国伦敦大雾乃为烧煤所产生的烟尘和烟雾散发不出去,造成千万人呼吸道感染,4天中死亡达4000多人。1991年日本四日市石油冶炼和工业燃油所排放的工业废气,使大气中的二氧化硫的浓度超过标准5~6倍,致使全市哮喘病发作。

我国十分重视环境保护工作,制订了防治大气污染的法规。例如“大气污染防治法”,“大气环境质量标准”等。人类只有一个地球,应该珍惜它。在不断发展生产的同时学会保护大气不受污染,保护地球环境,以使我们生活的大气永远洁净,天空永远蔚蓝。

://.pep.cn/200406/ca433675.htm

家中有污染防治方法(2003-9-1 20:06:03)

目前从事家庭室内空气检测的单位有科研单位、企事业单位和某些检测机构。这些检

测部门有的不具备相应的检测能力,有的向客户出具的“计量合格认证标志”其实并

不是针对居室环境检测颁发的。

没有资质的机构可能不专业,有资质的机构可能不适于为普通家庭检测,那老百

姓担心家中有空气污染该找谁来检测呢?消费者可以从这几个方面来了解检测机构的

性质:

首先看检测报告上是否有CMA的标志。计量认证是国家技术监督部门对检测机构的

实验能力、操作程序、人员要求、仪器指标的严格考核;其次看CMA(计量认证)批准

的检测项目中,是否有从事室内环境项目的检测内容;另外看现场检测时是否有技术

指标满足国标要求的检测仪器,是否按国标进行检测。到目前为止,本市只有上海市

室内装饰质量监督检验站通过了室内环境检测计量认证。

室内装潢造成的污染来源

1、人造板材及人造板家具;

2、涂料;

3、壁纸和地毯;

4.装饰石材

四步骤安全法

一、在选购建材时,应向商家索取相应的由权威部门出具的有关污染物含量的安

全证明。

二、室内装修后,不应立即入住,一般让新居在通风情况下空置一个月到数个月

为宜。

三、在迁入新居前,最好进行居室内环境检测和总体安全评估。

四、一旦发现问题,务必取相应的有效措施。

室内污染对策种种

室内装饰装修材料释放的有毒有害物质对室内造成的污染在治理时所取的方法

要根据其污染的程度做不同的方案,就业主本身来说应先注意新装修房要多开门窗,

保持室内通风;其次可养一些能吸收有害物质的花草减少室内有害物质的数量.当污染

达到一定程度就要用一些物理和化学的方法进行现场和持续性的治理,具体的方法如

下:

植物吸收法:

1.具有吸收甲醛作用的植物,如吊兰、芦荟、龙舌兰、虎尾兰等;

2.具有吸收苯作用的植物,如长青藤、铁树等;

3.具有吸收三氯乙烯作用的植物,如万年青、雏菊、龙舌兰等;

4.具有吸收二氧化硫作用的植物,如月季、玫瑰等;

5.具有吸尘作用的植物,如桂花;

6.具有杀菌作用的植物,如薄荷。

现场治理,仪器设备吸收分解法:

1.臭氧的侵略性和掠夺性击破甲醛的分子式,使之变成二氧化碳和水,达到分解

甲醛的目的,如一些空气处理臭氧机。

2.用电子和光离子及纳米技术,消除室内甲醛、苯、TVOC等有害物质,如空气

净化机等。

3.用纳米光触媒技术,分解、氧化苯类、甲醛、氨气等有害气体,使之变成无

毒无害气体和水汽,使各种异味得以消除,如“空气清”等。

持续性治理:

1、通过氧化吸收甲醛,将甲醛分解成二氧化碳和水后去除,从而有效地清除甲醛

,如装修除味剂、甲醛分解·除臭剂、甲醛捕捉剂、甲醛吸捕剂、空气消毒机、甲醛

一喷净等。

2、快速有效地消除室内空气中散发的三苯气体,氨类气体和其它有害气体,将其

包缚而去除,可用三苯清除剂等。

3、利用超临界萃取技术和纳米技术,发挥天然植物提取物和多功能化合物的综合

协调包缚作用,有效地清除甲醛,如甲醛清除剂等。

4、用超声波新概念净化空气,喷出的雾状水气和空气中的异(臭)味分子中和,

变成无味的微颗粒降落地面,如空气净化宝(喷雾器)。

5.通过电离空气中水分源源不断释放出负离子浓度5-20倍。有效清除各种异味,

并中和空气中的灰尘微粒,使之迅速沉降,有利于消除室内空气污染,如空气离子宝

等。

水源的污染及其防治方法

作者:邓海斌 上传:yeguiren 来源:水利工程网 2004-08-13 00:00

国家为了保障饮水卫生,保护取水源头,制订了《地表水环境质量标准》(GB3838-88),对取水的水源提出了质量要求。但是,大多数县镇供水企业由于缺少足够的资金和技术力量,对水源管理仅仅是确立水源保护区,对水源的污染及其防治缺乏了解。因此,了解水污染源,防止水污染产生和进一步恶化是水源管理中的一项重要任务。

一、水源污染的类型

县镇供水源头主要是受到人为或自然因素的影响,使水的感官性状、微生物指标、有毒成分等超出了标准。其类型有:

1.细菌和微生物污染。这类污染特点是数量大,分布广。特别是以地表水作为取水源头的供水企业,其污染主要来自城镇生活污水、医院污水、垃圾及地面径流等。每升生活污水中细菌总数可达几百万个以上,每克粪便中大约就有100多万个,细菌的种类也达百种之多。若只经加氯消毒就供饮用的水源,大肠菌群每升也不会少于千个。

2.有机物污染。这类污染主要是由于化肥农药及有机化学污染造成的。一般水中的碳水化合物、蛋白质、油脂、氨基酸、脂类等都可造成水中有机物含量偏高,水质变差,导致水体污染。水中有机物含量可以用五日生化需氧量(BOD5)或化学需氧量(COD)来表示。一般的有机污染物进入水中后就进行化学氧化分解,然后在微生物作用下进行生物化学氧化分解,这个过程会随温度、有机浓度、微生物种类的变化相应发生改变。含氮有机物就被硝化成亚硝酸盐、硝酸盐。溶解氧就是衡量有机污染程度和划分指标等级的依据,污染越严重溶解氧就越少。

3.富营养化污染。主要指以水库、湖泊为取水源头的污染。在水库与湖泊中由于水流缓慢,在有机物作用下引起藻类、浮游生物的急剧增长。水体富营养化没有统一指标规定。富营养化的水体藻类较多,水体呈绿或棕绿色,且伴有臭味,引起人体感官不适,对水质的净化和处理带来很大的麻烦。

此外,在工业较为发达的地区,水污染还包括有毒物污染、化学物质类污染、热污染、放射性污染等。

二、水源污染的防治方法

水源污染的防治对维护管理水源保护区十分重要。防治污染原则是预防为止,重在管理,主要方法:

1.定期进行水体污染源调查。根据水源污染的类型进行定期调查,要实地观察,收集排污资料,并且将污水排放口的水样委托当地卫生防疫或环保部门进行分析,并将调查结果整理成文字材料,预测污染发展的趋势。调查时间一般每年一次,规模要大,最好会同卫生防疫、环保部门一起调查,如果水质发生变化则相应增加调查次数。

2.加强水源上游水质监测。监测项目主要选择对水源有影响项目,可以选择反映水的感官性状的如浊度、色度、臭味、肉眼可见物等;反映有机物污染的如溶解氧、生化需氧量(BOD5)、化学需氧量(COD)、三氮(氨氮、亚硝酸盐、硝酸盐);反映细菌污染的微生物指标等;富营养化的加上藻类与浮游生物的监测。

3.依法治理污染源。水源污染防治是一项关系人民身体健康的民心工程,对已影响水源水质的污染源一定要依法治理,要依据国家颁布的《水法》、《环境保护法》、《生活饮用水卫生规范》、《污水综合排放标准》、《城市供水条例》等法律法规,紧密依靠当地、环保、卫生等部门有效地对污染源进行处理。

江西省宁都县供水公司在水源管理中就曾发现上游排放污水,造成色度偏高且伴有异臭。公司立即组织力量进行调查,发现上游一家食品厂和腐竹厂每天排放污水,于是将污水排放口水样委托环保局进行检测,并将调查结果整理成文字材料上报县和主管部门,在部门、卫生、环保等多家执法部门的配合下,依法对食品厂和腐竹厂的污水进行治理,确保了水源的安全与卫生。●宁都县供水公司 邓海斌

各级在防治大气污染方面的基本职责是什么?

根据大气污染防治法的规定,院和地方各级人民在防治大气污染方面的基本职责包括以下四个方面:

1.将大气环境保护工作纳入国民经济和社会发展。就是在经济、社会发展的需要和环境保护的需要之间作好综合平衡,将大气环境保护工作作为国家发展工作的有机组成部分,在国民经济和社会发展中同时规定经济、社会发展与大气环境保护的目标、措施、方法和指标。

2.合理规划工业布局。合理的工业布局既可以充分利用大气的自净能力,也可以减轻对大气的污染,因此,合理规划工业布局是解决大气污染问题的重要途径。合理规划工业布局既包括对新建工业进行合理布置,也包括调整现有的不合理的工业布局,有地迁移严重污染大气的工业企业。

3.加强防治大气污染的科学研究。我国大气污染严重的一个主要原因是防治大气污染的科学技术相对落后,大气污染的最终解决,还是有赖于科学技术的发展。所以,加强防治大气污染的科学研究是解决我国大气污染问题的根本措施之一。

4.取防治大气污染的措施,保护和改善大气环境。各级人民应当取防治大气污染的其他措施,包括划定大气污染防治重点城市和区域、积极发展城市集中供热、加强机动车污染控制等。

针对我市光污染防治工作的建议

兰州自古以来就是一座重工业城市,加上兰州处于季风区和光照充足地区,在工业产生的大量污染物不易排放的情况下,污染物极易发生光化学反应;由建筑物造成的光辐射,也极易对生物体产生影响。作为我国最早发生光污染的地区和西部大开发的重点开发城市,兰州应该深深地认识到环境保护的重要性。所以,预防和防治光污染,已经成为了兰州经济建设中的一项艰巨任务。作为兰州的中学生,将来祖国的栋梁,我们应该为故乡的经济建设出一份应尽的力量。

由于兰州的地理位置因素,在我们对人们的调访当中,听说过和了解光污染的人们的数量还不到总调查人数的30%。目前,兰州也由于各种因素迟迟未出台有关专门防治光污染的相关立法和条例,只是仅针对污染物的排放量、煤改气措施和建筑物的楼向间距、向阳位置做出了一些规定。而这些规定对于光污染的根本治理还远远不够。这说明了我市环保部门对光污染这一潜在威胁的重视和宣传力度还不够。经过几个月的努力研究与探讨,我们认为:兰州在治理光污染方面应走预防为主、防治结合的治理方法。一是要抓宣传和教育,二是抓科技,三是抓立法,四是抓监控与管理。在人口密集的地区,可以散发传单,在与照明业有关的企业和单位,学校,可以适当的组织宣传和学习,使人们多少能知道光污染,了解它的危害,增强对光污染的抵御能力。在开始规划设计城市夜景照明时就应该注意防治光污染,实现建设科学夜景、保护夜空双达标的要求。对于正在建设夜景照明的地区务必在规划时就考虑光污染问题做到未雨绸缪,防患于未然。对已经建设好夜景照明的地区,应及时发现问题,将污染尽量控制在萌芽状态。

另外,我们还有一些个别的提议:

1.圳1999年的高交会上,一种名位隐框双层玻璃幕墙防反射的安全装置首次以高科技手段攻克了玻璃幕墙的白亮污染问题,在国内率先摈弃了原始的单片玻璃镀膜,用了双玻璃夹层悬浮膜的技术,起到良好的光吸收隔热效能。我们建议兰州市能用这种高新科技产品,以做到科学规划。我们相信这一定很有用。

2.人工白昼会伤害鸟类和昆虫,强光可能破坏生物夜间正常的繁殖过程,许多依靠昆虫受粉的植物也会受到不同影响。所以,我们建议减少夜间对植物的彩光投射。尤其在一些繁华路段(如滨河路)“越亮越好”并不科学。

3.我们建议多用高品质、遮光性能好的荧光灯。其工作频率在20KHZ以上,使荧光灯的闪烁度大幅度下降,改善了视觉环境,有利于人体健康。少用黑光灯、激光灯等不利光源。

4.城市规划要立足于协调统一。对广告牌和霓虹灯应加以控制和科学管理;建筑物和预乐场所周围,应多植树种草种花,以改善光环境;注意减少大功率强光光源。

5.对紫外线和红外线等这类看不见的辐射源,必须取必要的防护措施。

6.控制和减少车尾气中氮氧化物的排放量,提高能源利用率,提倡使用清洁新能源。彻底切断光化学烟雾污染源。

7.用新方法,改善视环境。(注意家居装修材料、颜色搭配;在书本上附绿色薄膜等等)。

醇基液体燃料好用吗?是不是要比液化气省钱,安全?承德市隆化县哪里有做醇基液体燃料啊?

⑴2Cl - +2H 2 O 2OH - +H 2 ↑+Cl 2 ↑;

⑵2FeTiO 3 +6C+7Cl 2 2TiCl 4 +2FeCl 3 +6CO;

⑶-512 kJ?mol - 1 ?防止高温下Mg(Ti)与空气中的O 2 (或CO 2 、N 2 )反应;⑷10;

⑸CH 3 OH+8OH - -6e — =CO 3 2 - +6H 2 O?(6)①>?② ?,减小③b c

(1)惰性电极电解饱和食盐水的生成物是氢气、氢氧化钠和氯气,所以方程式为2Cl - +2H 2 O 2OH - +H 2 ↑+Cl 2 ↑。

(2)根据反应物和生成物并依据守恒法可以得出反应的方程式为2FeTiO 3 +6C+7Cl 2 2TiCl 4 +2FeCl 3 +6CO。

(3)根据盖斯定律可知,①×2-②即得到反应2Mg(s)+TiCl 4 (g)=2MgCl 2 (s)+Ti(s),所以反应热是-641 kJ·mol - 1 ×2+770 kJ·mol - 1 =-512 kJ?mol - 1 。由于镁或钛都是金属,在高温下易与空气中的O 2 (或CO 2 、N 2 )反应,所以需要在Ar气氛中进行。

(4)192t甲醇是6×10 6 mol,所以需要CO是6×10 6 mol,氢气是12×10 6 mol,。根据(2)中的反应可知,同时需要氯气是7×10 6 mol,则在(1)反应中生成的氢气是7×10 6 mol,所以还需要氢气是5×10 6 mol,质量是10t。

(5)原电池中分解是失去电子的,所以甲醇在负极通入。又因为溶液显碱性,所以负极反应式为CH 3 OH+8OH - -6e — =CO 3 2 - +6H 2 O。

(6)①因为是可逆反应,所以转化率达不到100%,即a大于b。

②平衡常数是指在一定条件下,可逆反应达到平衡状态时,生成物浓度的幂之积和反应物浓度的幂之积的比值,所以根据方程式可知,K= 。由于是放热反应,所以温度升高,平衡向逆反应方向移动,平衡常数减小。

③在一定条件下,当可逆反应的正反应速率和逆反应速率相等时(但不为0),反应体系中各种物质的浓度或含量不再发生变化的状态,称为化学平衡状态。速率之比是相应的化学计量数之比,因此A中的关系始终是成立,不正确。由于反应是体积减小的,所以压强也是减小,因此B可以说明。C中反应速率的方向相反,且满足速率之比是相应的化学计量数之比,正确。密度是混合气的质量和容器容积的比值,在反应过程中质量和容积始终是不变的,D不正确。答案选BC。

常年大量批发供应销售各种适合燃烧用的不同纯度含量的精,粗甲醇!质优价廉!可免费传授技术以及日后技术升级和改进,可以不收一分技术转让费,大家可以拭目以待!

用心的朋友们是想知道实际而不是理论,需要脚踏实地务实的见解,如有创业生物 醇油决心并有诚意的,可以和我聊聊:,我生产的醇油火温高,耗量小,欢迎到我饭店客户实际参观,我自己的量还是蛮大的!每月大几百吨,送油的油罐车,皮卡,面包车都有!江西,湖南,湖北,安徽,河南,贵州,广东,广西离的比较近!全程一切亲自操作原料现场买,自己配油自己买温度计测火温,油自己调我不动手,其他化工原材料严格按比例在电子称和毫升杯上过量,不加大其他原材料所占的比例,自己到加油站买柴油,与柴油在公正公平全方位各角度的进行对比,同样的灶具,油门打在同样的位置,用手机秒表倒计时掐算对比柴油和醇油分别烧开水的所用时间,每小时的耗量,对比火温!,自己把我的油拿到当地找其他除我以外的饭店试用效果!本人不是公司是个人做实体的!我愿空闲时与有心从事该行业的朋友们交流经验,指点你看不到的问题,保证你不走弯路,一步到位,准确测试各指标测试方法,只要按我说的去分辨达到那几点好配方必须具备的要求,你到哪学都可学到实用好的配方,只要他们能按我所告诉你的程序和分辨方法,愿意和答应你严格丝毫不打折扣去测试,并得到真实的真正好配方所具备的数据,希望大家共同进步!我所知道的配方很多了,最新复合醇油工业燃烧机锅炉配方!差的,老的配方可免费告诉你几个!没有一句理论全部实践,忙时可以一起送油,一起安油箱,一起谈业务,一起拉原料,一起去结账,非诚勿扰!